3D Polygon Mesh Compression with Multi Layer Feed Forward Neural Networks

نویسندگان

  • Emmanouil Piperakis
  • Itsuo Kumazawa
چکیده

In this paper, an experiment is conducted which proves that multi layer feed forward neural networks are capable of compressing 3D polygon meshes. Our compression method not only preserves the initial accuracy of the represented object but also enhances it. The neural network employed includes the vertex coordinates, the connectivity and normal information in one compact form, converting the discrete and surface polygon representation into an analytic, solid colloquial. Furthermore, the 3D object in its compressed neural form can be directly without decompression used for rendering. The neural compression representation is viable to 3D transformations without the need of any anti-aliasing techniques transformations do not disrupt the accuracy of the geometry. Our method does not suffer any scaling problem and was tested with objects of 300 to 10 polygons such as the David of Michelangelo achieving in all cases an order of O(b) less bits for the representation than any other commonly known compression method. The simplicity of our algorithm and the established mathematical background of neural networks combined with their aptness for hardware implementation can establish this method as a good solution for polygon compression and if further investigated, a novel approach for 3D collision, animation and morphing.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

PREDICTION OF COMPRESSIVE STRENGTH AND DURABILITY OF HIGH PERFORMANCE CONCRETE BY ARTIFICIAL NEURAL NETWORKS

Neural networks have recently been widely used to model some of the human activities in many areas of civil engineering applications. In the present paper, artificial neural networks (ANN) for predicting compressive strength of cubes and durability of concrete containing metakaolin with fly ash and silica fume with fly ash are developed at the age of 3, 7, 28, 56 and 90 days. For building these...

متن کامل

Application of Artificial Neural Networks and Support Vector Machines for carbonate pores size estimation from 3D seismic data

This paper proposes a method for the prediction of pore size values in hydrocarbon reservoirs using 3D seismic data. To this end, an actual carbonate oil field in the south-western part ofIranwas selected. Taking real geological conditions into account, different models of reservoir were constructed for a range of viable pore size values.  Seismic surveying was performed next on these models. F...

متن کامل

Introduction to multi-layer feed-forward neural networks

Basic definitions concerning the multi-layer feed-forward neural networks are given. The back-propagation training algorithm is explained. Partial derivatives of the objective function with respect to the weight and threshold coefficients are derived. These derivatives are valuable for an adaptation process of the considered neural network. Training and generalisation of multi-layer feed-forwar...

متن کامل

Prediction of Permanent Earthquake-Induced Deformation in Earth Dams and Embankments Using Artificial Neural Networks

This research intends to develop a method based on the Artificial Neural Network (ANN) to predict permanent earthquake-induced deformation of the earth dams and embankments. For this purpose, data sets of observations from 152 published case histories on the performance of the earth dams and embankments, during the past earthquakes, was used. In order to predict earthquake-induced deformation o...

متن کامل

Studies with a Generalized Neuron Based PSS on a Multi-Machine Power System

An artificial neural network can be used as an intelligent controller to control non-linear, dynamic system through learning. It can easily accommodate non-linearities and time dependencies. Most common multi-layer feed-forward neural networks have the drawbacks of large number of neurons and hidden layers required to deal with complex problems and require large training time. To overcome these...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002